Sucking up CO2

Founded: 2019

HQ: Palo Alto, CA

Capturing CO2 with electrons.

Big Picture

Carbon dioxide makes up just 0.04% of air, which is why capturing it directly from the atmosphere is so hard. Strictly chemical processes are well understood but most require serious energy to pass enough air through “carbon-sticky” chemicals and then unbind them with heat. Advances in electrochemistry and material science point to simpler processes driven primarily by electricity.

How it Works

Holy Grail’s direct air capture system resembles a discharging battery cell: atmospheric air flows through a positively charged cathode, CO2 molecules are ionized and transported from the cathode to the anode. No heat or water is required along the way, just clean electricity. This allows Holy Grail to build compact cells not much larger than a laptop that can be stacked together. 

Unfair Advantage

Their approach is radically simple, slashing the heat, water, and energy requirements typically associated with direct air capture. This leads to a very low minimum cost for stripping CO2 from the air. The tech lends itself well to a modular, manufacturable cell that could just as easily scrub CO2 at a household level as at an industrial site with cells piled on top of one another, and many use cases in between.


sq. inch cell

captures a US household’s annual emissions


Nuno, an industrial designer with a background in chemistry and materials science, built Holy Grail’s stack components from scratch.


David is a chemical engineer from Virginia Tech with experience building manufacturing systems for novel membrane materials.

Introducing Holy Grail


Holy Grail raises $2.7M seed fund to create modular carbon capture devices


CO2 seperation and transport via electrochemical methods

Journal of Electrochemical Society

Electrochemical seperation and concentration of <1% carbon dioxide from nitrogen

Journal of Electrochemical Society