Ultra-hot, superconducting magnets to enable fusion power.
Big Picture
Fusion, the power of the stars, is the holy grail of clean energy: limitless, dispatchable, concentrated, and carbon-free. Unlike convention nuclear, there is inherently no risk of meltdown, proliferation, or waste. Since the dawn of the nuclear age scientists have sought to harness fusion, yet achieving breakeven—where the reactor gives off more energy than it takes in—has proven elusive.
How It Works
Fission splits atoms, whereas fusion joins them. However, the immense pressure and energy needed to generate a 100m°C plasma where these reactions occur are extremely difficult to sustain. Whereas some other efforts seek to produce the conditions for fusion by building bigger magnets, CFS is making far more powerful ones that will confine this star-like plasma and harness its power.
Unfair Advantage
What gives CFS the surest path to commercial fusion is the combination of proven tokamak physics with breakthrough magnet technology. They have developed new, high temperature superconducting tape to build the world’s most powerful magnets. This enables 60x smaller, more affordable reactors that accelerate the path to commercial fusion energy in time and on a scale to make a difference.
10
Gigatons of CO2e
potentially avoided by 2050

BOB MUMGAARD CEO & CO-FOUNDER
Bob holds a PhD in applied plasma physics and a Master’s in nuclear science and Engineering from MIT.

DAN BRUNNER CTO & CO-FOUNDER
Dan holds a PhD in applied plasma physics from MIT, where he also did his Postdoc.

Brandon Sorbom CSO & CO-FOUNDER
Brandon holds a PhD in nuclear science and engineering from MIT, where he also did his Postdoc.
Compact Nuclear Fusion Reactor Is ‘Very Likely to Work,’ Studies Suggest
New York Times
In search of clean energy, investments in nuclear-fusion are heating up
Quartz
This MIT Project Says Nuclear Fusion Is 15 Years Away (No, Really, This Time)
Fast Company
MIT launches multimillion-dollar collaboration to develop fusion energy
Nature